Search results for "supramolecular cage"

showing 4 items of 4 documents

Controlling the Host-Guest Interaction Mode through a Redox Stimulus

2017

International audience; A proof-of-concept related to the redox-control of the binding/releasing process in a host-guest system is achieved by designing a neutral and robust Pt-based redox-active metallacage involving two extended-tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host-guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host-guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental d…

010405 organic chemistryStereochemistrySupramolecular chemistryGeneral MedicineGeneral ChemistryReversible processself-assembly010402 general chemistryElectrochemistry01 natural sciencesRedoxsupramolecular cageCatalysisCoronene0104 chemical scienceschemistry.chemical_compoundchemistryChemical physicsDensity functional theory[CHIM.COOR]Chemical Sciences/Coordination chemistrySelf-assemblyTetrathiafulvaleneexTTF
researchProduct

Tetrameric and Dimeric [N∙∙∙I+∙∙∙N] Halogen-Bonded Supramolecular Cages

2017

Tripodal N-donor ligands are used to form halogen-bonded assemblies via structurally analogous Ag+-complexes. Selective formation of discrete tetrameric I6L4 and dimeric I3L2 halonium cages, wherein multiple [N∙∙∙I+∙∙∙N] halogen bonds are used in concert, can be achieved by using sterically rigidified cationic tris(1-methyl-1-azonia-4-azabicyclo[2.2.2]octane)-mesitylene ligand, L1(PF6)3, and flexible ligand 1,3,5-tris(imidazole-1-ylmethyl)-2,4,6-trimethylbenzene, L2, respectively. The iodonium cages, I6L14(PF6)18 and I3L22(PF6)3, were obtained through the [N∙∙∙Ag+∙∙∙N] → [N∙∙∙I+∙∙∙N] cation exchange reaction between the corresponding Ag6L14(PF6)18 and Ag3L22(PF6)3 coordination cages, prepar…

Steric effectssupramolecular cagesHalogen bond010405 organic chemistryStereochemistryLigandOrganic Chemistryhalogen bondsCationic polymerizationSupramolecular chemistryGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryHalogenHalonium ionta116OctaneChemistry: A European Journal
researchProduct

Encapsulation of Xenon by a Self-Assembled Fe4L6 Metallosupramolecular Cage

2015

We report (129)Xe NMR experiments showing that a Fe4L6 metallosupramolecular cage can encapsulate xenon in water with a binding constant of 16 M(-1). The observations pave the way for exploiting metallosupramolecular cages as economical means to extract rare gases as well as (129)Xe NMR-based bio-, pH, and temperature sensors. Xe in the Fe4L6 cage has an unusual chemical shift downfield from free Xe in water. The exchange rate between the encapsulated and free Xe was determined to be about 10 Hz, potentially allowing signal amplification via chemical exchange saturation transfer. Computational treatment showed that dynamical effects of Xe motion as well as relativistic effects have signific…

Xenon010405 organic chemistryChemistryChemical exchangechemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryBinding constantCatalysis0104 chemical sciencesSelf assembledColloid and Surface ChemistryXenon13. Climate actionComputational chemistrySaturation transferChemical physicsmetallosupramolecular cagesmolecular encapsulationCageRelativistic quantum chemistrySignal amplificationta116Journal of the American Chemical Society
researchProduct

Tetrameric and Dimeric [N∙∙∙I+∙∙∙N] Halogen-Bonded Supramolecular Cages

2017

Tripodal N‐donor ligands are used to form halogen‐bonded assemblies via structurally analogous Ag+‐complexes. Selective formation of discrete tetrameric I6L4 and dimeric I3L2 halonium cages, wherein multiple [N⋅⋅⋅I+⋅⋅⋅N] halogen bonds are used in concert, can be achieved by using sterically rigidified cationic tris(1‐methyl‐1‐azonia‐4‐azabicyclo[2.2.2]octane)‐mesitylene ligand, L1(PF6)3, and flexible ligand 1,3,5‐tris(imidazole‐1‐ylmethyl)‐2,4,6‐trimethylbenzene, L2, respectively. The iodonium cages, I6L14(PF6)18 and I3L22(PF6)3, were obtained through the [N⋅⋅⋅Ag+⋅⋅⋅N]→ [N⋅⋅⋅I+⋅⋅⋅N] cation exchange reaction between the corresponding Ag6L14(PF6)18 and Ag3L22(PF6)3 coordination cages, prepare…

supramolecular cageshalogen bonds
researchProduct